Rabu, 03 Agustus 2016

uji hipotesis kelas xi semester 2




Statistika: Uji Hipotesis, Fungsi Distribusi Binomial
A.  Pengertian Pengujian Hipotesis
Hipotesis berasal dari bahasa Yunani, Hupo  berarti Lemah atau kurang atau di bawah ,Thesis berarti teori, proposisi atau pernyataan yang disajikan sebagai bukti. Sehingga dapat diartikan sebagai Pernyataan yang masih lemah kebenarannya dan perlu dibuktikan atau dugaan yang sifatnya masih sementara.
Hipotesis juga dapat diartikan sebagai pernyataan keadaan populasi yang akan diuji kebenarannya menggunakan data/informasi yang dikumpulkan melalui sampel, dan dapat dirumuskan berdasarkan teori, dugaan, pengalaman pribadi/orang lain, kesan umum, kesimpulan yang masih sangat sementara.
Hipotesis statistik adalah pernyataan atau dugaan mengenai keadaan populasi yang sifatnya masih sementara atau lemah kebenarannya. Hipotesis statistik dapat berbentuk suatu variabel seperti binomial, poisson, dan normal atau nilai dari suatu parameter, seperti rata-rata, varians, simpangan baku, dan proporsi. Hipotesis statistic harus di uji, karena itu harus berbentuk kuantitas untuk dapat di terima atau di tolak. Hipotesis statistic akan di terima jika hasil pengujian membenarkan pernyataannya dan akan di tolak jika terjadi penyangkalan dari pernyataannya.

Pengujian Hipotesis adalah suatu prosedur yang dilakukan dengan tujuan memutuskan apakah menerima atau menolak hipotesis itu. Dalam pengujian hipotesis, keputusan yang di buat mengandung ketidakpastian, artinya keputusan bias benar atau salah, sehingga menimbulkan risiko. Besar kecilnya risiko dinyatakan dalam bentuk probabilitas. Pengujian hipotesis merupakan bagian terpenting dari statistic inferensi (statistic induktif), karena berdasarkan pengujian tersebut, pembuatan keputusan atau pemecahan persoalan sebagai dasar penelitian lebih lanjut dapat terselesaikan.

B.  Prosedur  Pengujian Hipotesis
Prosedur pengujian hipotesis statistic adalah langkah-langkah yang di pergunakan dalam menyelesaikan pengujian hipotesis tersebut. Berikut ini langkah-langkah pengujian hipotesis statistic adalah sebagai berikut.
1.  Menentukan  Formulasi Hipotesis
Formulasi atau perumusan hipotesis statistic dapat di bedakan atas dua jenis, yaitu sebagai berikut;
  1.   Hipotesis nol / nihil (HO) : Hipotesis nol adalah hipotesis yang dirumuskan sebagai suatu pernyataan yang akan di uji. Hipotesis nol tidak memiliki perbedaan atau perbedaannya nol dengan hipotesis sebenarnya.
  2.   Hipotesis alternatif/ tandingan (H1 / Ha): Hipotesis alternatif adalah hipotesis yang di rumuskan sebagai lawan atau tandingan dari hipotesis nol. Dalam menyusun hipotesis alternatif, timbul 3 keadaan berikut.
  •   H1 menyatakan bahwa harga parameter lebih besar dari pada harga yang di hipotesiskan. Pengujian itu disebut pengujian satu sisi atau satu arah, yaitu pengujian sisi atau arah kanan.
  •   H1 menyatakan bahwa harga parameter lebih kecil dari pada harga yang di hipotesiskan. Pengujian itu disebut pengujian satu sisi atau satu arah, yaitu pengujian sisi atau arah kiri.
  •   H1 menyatakan bahwa harga parameter tidak sama dengan harga yang di hipotesiskan. Pengujian itu disebut pengujian dua sisi atau dua arah, yaitu pengujian sisi atau arah kanan dan kiri sekaligus.  



Secara umum, formulasi hipotesis dapat di tuliskan :
2.   Menentukan Taraf Nyata (α)
Apabila hipotesis nol (H0) diterima (benar) maka hipotesis alternatif (Ha) di tolak. Demikian pula sebaliknya, jika hipotesis alternatif (Ha) di terima (benar) maka hipotesis nol (H0) ditolak.
Taraf nyata adalah besarnya batas toleransi dalam menerima kesalahan hasil hipotesis terhadap nilai parameter populasinya. Semakin tinggi taraf nyata yang di gunakan, semakin tinggi pula penolakan hipotesis nol atau hipotesis yang di uji, padahal hipotesis nol benar.
Besaran yang sering di gunakan untuk menentukan taraf nyata dinyatakan dalam %, yaitu: 1% (0,01), 5% (0,05), 10% (0,1), sehingga secara umum taraf nyata di tuliskan sebagai α0,010,05, α0,1. Besarnya nilai α bergantung pada keberanian pembuat keputusan yang dalam hal ini berapa besarnya kesalahan (yang menyebabkan resiko) yang akan di tolerir. Besarnya kesalahan tersebut di sebut sebagai daerah kritis pengujian (critical region of a test) atau daerah penolakan ( region of rejection).

Tidak ada komentar:

Posting Komentar